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SURVEY AND COMPARATIVE ANALYSIS OF 
CURRENT GEOPHYS ICAL MODELS 

SUMMARY 

By using currently accepted constants of geodesy, especially several 
different sets of oblateness coefficients, seven models of the geometry of the 
ear th  and its gravitational field are numerically derived and compared with each 
other and with a newly developed geopotential based on recent  measurements of 
the secular  and periodic perturbations of artificial satellite orbits. 

Conclusions a r e  drawn which show, among other things, that the currently 
used NASA Standard Model deviates significantly from the "bestfTgeoid, and that 
there  a r e  better analytical, a s  well a s  numerical, models by which improved 
approximation can be achieved. 

Also, it is shown that improvements in the numerical values of the used 
oblateness coefficients, ra ther  than in their  number, appear to have little influ­
ence on the values of the gravity, but that they affect the geometries significantly. 
Increasing the number of zonal harmonics coefficients, however, can lead to  
considerable improvements in the gravity model, a t  least  in the range studied 
(up  to and including JI4). 

INTRODUCT ION 

In the past a number of theories of varying complexity have been developed 
to describe the figure and the gravitation field of the ear th  for use in geodetic, 
astrodynamic, and astronomical calculations. 

In scrutinizing these theories, a number of discrepancies are manifest 
which appear to be caused by two factors;  i. e.  , ( I)inherent inconsistencies in 
the development of some of the theories, and ( 2 )  differences in gravitational 
and geometrical parameters  used by their  authors. 

With regard  to the first consideration, while the ear th ' s  gravitational 
potential (i .e. , the potential energy of the ear th  in relation to the position 
relative to the earth) is commonly expressed by tke potential function as a 



series of spherical  harmonics,  as adopted by the International Astronomical 
Union (MU)[ 13, the shape of the ear th  introduced in the geopotential at the 
earth 's  surface with the simultaneous assumption that the potential along the sur­
face of the geoid is constant, is that of a n  ellipsoid which approximates the actual 
geoid. The flattening of the ellipsoid is usually determined approximatively by 
the astrogeodetic methods of geometrical geodesy (sometimes also by the less 
accurate techniques of gravimetry) , using var iants  of Clairaut's theorem. How­
ever ,  even if higher-order extensions of the latter are used, they remain only 
approximations, which become increasingly inaccurate for increasing deviation 
of the geopotential f rom that of a regular  ellipsoid. 

The second consideration r e fe r s  to the fact that, with our increasing 
knowledge of our globe and its gravity anomalies, the descriptive geographical 
parameters  are subject to change, particularly the number and values of the 
oblateness coefficients, but also - to a l e s s e r  degree - the gravitational param­
eter GM 0'and the geometrical parameters  flattening f,  and mean equatorial 

radius E . Urgently needed standardization of the principal parameters  was e 
accomplished by NASA in 1963, but new and additional data have been determined 
continuously ever  since and are being determined from an ever-increasing popu­
lation of artificial satellites in precision-tracked ( Baker-Nunn) orbits of all 
inclinations. 

To relate these new observations to the geoid without having to accept 
the inconsistencies of the second- and third-order Clairaut extensions, a new 
theory w a s  developed recently at MSFC by H. Krause [a,31 , which fur ther  in­
creased the bulk of existing geographic parameters  and models. 

It is the objective of the following analysis to define and to compare 
seven different geographic models, one of which is the cur ren t  (but outdated) 
NASA Standard. These models a r e  based on four different s e t s  of oblateness 
coefficients, all of which are applicable to present  practical work, and also on 
the fact that for each set of oblateness conditions two body geometries can be 
defined; i. e. ~ a spheroid composed of superimposed spherical  harmonics and a 
regular ellipsoid approximating this spheroid. 

In the first part  of the analysis, the general background and the nature 
of the problem is considered in some detail, followed by the derivation and 
description of the geophysical theories. In the third part ,  the models a r e  
compared with each other. A number of salient conclusions, forming the fourth 
part ,  can then be draw. 
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GENERAL BACKGROUND AND DISCUSSION OF THE PROBLEM 

The Potential Funct ion of t h e  Earth 

In the study of geocentric motion such a s  that encountered on rocket 
trajectories and satellite orbits, among the most  important constants necessary 
for describing the environment are those pertaining to  the gravity field acting on 
the moving body, and to the shape o r  figure of the gravitating body, the earth. 

Theories attempting to describe the ear th ' s  gravity field a re ,  by necessi­
ty, fundamentally based on Newton's Universal Law of Gravitation, which is 
rigorously accurate  for a central force field a s  produced by a perfectly homo­
geneous and perfectly spherical body. The gravitational potential of such a 
Newtonian force field is 

The potential function of the ear th  U 0'o r  the geopotential, is defined 

as the integral of the gravity forces over the entire field, which a r e  the resultant 
of the gravitational forces  due to Newtonian attraction and the centrifugal force 
due to the rotation of the ear th  and its atmosphere.  Thus, the geopotential is 
the sum of tne potential of the gravitational field and the potential of tne centrif­
ugal force. 

u 0 = P 
r ( 1  + + )  + - w  r

2 
1 2 2  cos2@ 

If the rotational t e rm is omitted, equation ( 2 )  expresses  the gravitational 
potential which is appropriate to inertial coordinates, a s  useful for exo-atmos ­
pheric (free-flight) flight phases. Fo r  geodesy, as well a s  for  all other applica­
tions requiring a rotating ear th  coordinate system, the t e rm is retained. 

In equation ( 2 )  , the modifier z,b accounts for the fact that, contrary to 
the basic assumptions of the Newtonian potential, the ear th ' s  internal mass dis­
tribution is not entirely homogeneous and its shape is not spherical, but oblate. 
Also, its surface is covered with irregularit ies,  such a s  continental highlands, 
depressions, mountain ranges, ocean deeps, valleys, etc. , which give r i s e  to 
gravitational anomalies and require  an  additive perturbative t e rm to complete 
the geopotential. 
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Since the potential function of the ear th  is a solution of the Laplace 
equation ( V  U 

@ 
= 0) , it is a harmonic function and can be represented ana­

lytically as the sum of a series of two-dimensional (spherical)  harmonics in a 
manner similar to  the one-dimensional Fourier  series as representation of a 
nonanalytical function on a circle. The coefficients of the terms of this infinite 
(converging) series are polynomials of the general Legendre type, while the 
terms themselves are the so-called surface harmonics , the introduction of 
which is due to  Legendre and Laplace. If the spherical  harmonic is a function 
of two'variables, such as latitude and longitude ( r a t h e r  than only one, the lati­
tude) , it involves the so-called Associated Legendre Polynomials. 

The acceleration of gravity g of the ear th  is defined as VU and can 
therefore a1s.o be expressed in spherical harmonics. 

The perturbative parameter  IC, of the gravitational potential in equation 
( 2 )  can be expanded, as described, in an infinite series of spherical  harmonics. 

where r is the distance from the center of the earth,  E is the ear th 's  mean e 
equatorial radius, @ is the latitude, h is the longitude, C and S are 

m n, m n, m 
numerical coefficients, and the P are the associated Legendre polynomials.n 
Introducing equation (3)  in equation ( 2 ) ,  one obtains the general formula for 
the earth potential, as recommended by the IAU ( 1962) [ 4 , i  ] . 

r W n / E \  n 

\ - In=l  m = O  

+ 	s s i n m h )  
n, m 

The Spherical Harmonics 

It is seen that the second (aspherical)  par t  of equation (4 )  consists of 
an infinite series of harmonics which - in a rigorous sense - describes the 
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perturbative potential accurately only if an infinite number of terms are con­
sidered. Taking the t e rms  by families according to  the indices, it is further­
more  seen that f o r  the first existing family, where m = 0, 1 5 n < C O ,  the equa­
tion reduces to 

Um=O r n=1 
- Pn ( s i n @ )  - Cn 1 

for  the purely gravitational potential. 

In this special case, P ( s i n  @) are the (simple) Legendre polynomialsn 
of argument sin@, usually r e fe r r ed  to  as "zonal" harmonics. Obviously, the 
potential U

m = O  
is independent of the longitude h ; hence, it is constant along 

(latitude) parallels.  This means that the undulations of the harmonics on the 
sphere are zero along parallels and become alternately positive and negative 
between these n parallels in a distance T . Thus, equation (5)  refers to an 
axially symmetr ic  ear th  which is fluted along the parallels and where the sym­
metry axis is the rotational axis through the poles. 

A s  an alternate for  C n, 0' 
it has been recommended by the IAU [ i ]  to 

us e 

Thus , for  the body-of-revolution case,  the purely gravitational potential 
becomes 

00 

Um=@ - i i [ l -
n=1 

Jn . (>)n  - Pn ( s in@)  ( 7 )r 

The t rue figure of the earth does not exactly exhibit rotational symmetry,  
as assumed by setting m=O in equation (4). The principal axes of inertia of the 
t rue earth do not exactly coincide with the rotational axis system. Thus, the 
angular momentum of the ear th  is not pointing exactly in the same direction as 
the angular velocity. Consequently, products of inertia do exist, which are 
represented by higher harmonics. By letting m assume integral values from 
1 to n, t e r m s  are added to the second par t  of equation (5)  , which include the 
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longitude h as a second variable. Consequently, the associated Legendre poly­
m

nomials P ( s in@)are a l so  required, as well as coefficients J . These 
n n, m 

t e r m s  are referred to as tesseral harmonics, with the exception of the two 
terms in equation (4) resulting from letting m = n, s o  that 

nC P c o s n h  and S P n s i n n h  
n ,n  n n , n  n 

appear.  These two t e rms  are called "sectorial" harmonics . 

The tesseral harmonics ( 0  < m < n) have zeros  both along meridians 
and along parallels;  thus, the undulations represented by them become zero on 
the reference spheroid simultaneously on a number of meridians and parallels.  
They undulate in the form of a network ac ross  the spheroid s imi l a r  to a chess­
board composed of fields that are  alternatingly positive and negative. Thus, 
for  example, the spherical  harmonic represented by the function Pi (with the 
coefficient J,, 4 *) forms a network of five meridians (four  zeros in 180 degrees) 
and ( 6 - 4) = 2 parallels (not equator) on the sphere,  cutting it into 30  (alter­
natingly raised and depressed) pieces. 

In the special case of the two families of sectorial  harmonics, the undu­
lations of the function become zero on the reference spheroid for cos@ = i 1 
(on the poles) and fo r  cos n h = 0, i .  e .  , along n meridians which are  symmetri­
cal to n planes through the rotational axis,  thus cutting the spheroid in sec to r s  
which are alternately concave and convex. J4, , for  example, would represent  
undulations featuring four meridians and eight sectors .  

1. The notation used commonly in the l i terature for  the tesseral and sectorial  
J-coefficients 	is J . Thus, the f i r s t  sectorial  harmonics coefficient would be nm 
J22, the first tesseral coefficient Ji2,etc. While this practice represented an 
ambiguity in notation, with respect  to the zonal harmonics, no great confusion 
could be caused as long as the zonal harmonics used in practical work did not 
exceed the tenth o rde r .  With present analyses of the higher zonal harmonics 
already going to n = 21, m = 0 [ 51 however, notation of the mentioned type would 
easily confuse tesseral with zonal harmonics. Thus, the zonal JI4could easily 
be interpreted as the tesseral n = 1, in = 4. Since powers of J are  sometimes n m
encountered, the old practice of writing J is a l so  not desirable.  Consequently,

n 
it is suggested that tesseral and sectorial  coefficients are indexed with a dividing 
comma, i. e. , J , while the zonal notation J be retained. The notation 

n, m n mP fo r  the associated Legendre polynomials should also remain unchanged.
n 
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The Harmonics Coefficients 

The coefficients of the tesseral harmonics of the earth, especially the 
higher ones, are not really known. The sectorial  coefficients J2, and J4, 
have been determined tentatively during the past  6 years  and are sometimes 
used in high precision orbit determination prograins [ 6 ] .  F o r  J2, , which has 
two zeros along a parallel  (four sectors)  and thus determines the ellipticity 
of the equator and the parallels, Kaula [7]  gives 

J 2 , 2  = ( 1 . 8 0  f 0.1) x IOm6 . 

Of the tesseral harmonic perturbations of satellite orbits, only the 
sector ia l  J2, is large enough t o  be of practical concern in most  orbit analyses; 
specifically, for  example, this harmonic affects the supplemental energy require­
ments of 24-hour satell i tes.  The sectorial  harmonic due to  Jz, is depicted in 
Figure 1. 

Because of the uncertainty in and relative insignificance of the t e s se ra l  
harmonics coefficients, they are  usually neglected in the potential function which 
therefore assumes the coinnionly used forin 

which was first suggested by Brouwer [ 81 and adopted by the M U  in 1961. If 
so desired,  t e s se ra l  and sectorial  ternis with the appropriate associated 
Legendre polynomials can be added to the second part of the equation, as required 
by the inclusion of the longitude h in the analysis, as we l l  as the rotational, 
potential 1/21 r' w' cos' @ to the whole equation to transform the gravitational 
Potential in inertial coordinates for  a free body to the gravity potential for  a 
body attached to the earth. 

Of the ( theoretically infinitely many) zonal harmonics coefficients Jn'
only a few are known with adequate accuracy. If a n  equatorial geocentric 
coordinate system is assumed as a reference system such that its origin coin­
cides with the center of mass ,  and if the latitude @ is measured relative to 
this center,  the first t e r m  in the sum of equation ( 8 )  , which is proportional to 
l/r , vanishes since the coefficient J1, multiplied with E , would represent the e 
distance between coordinate origin and center of mass ;  thus, J, = 0 . 

7 
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FIGURE i.  FIRST SECTORIAL HARMONIC (DUE TO Jz, 2 )  A T  EQUATOR 

Of the other zonal functions, the second order  harmonic is by far the 
largest, since it refers to  the m a s s  distribution due to the ear th  oblateness, 
thus defining the departure of the shape of an ear th  ellipsoid from that of 
a n  ideal sphere,  while 54 being three  orders  of magnitude sma l l e r  than J2,and 
all following even J's account for  deviations in  hemispherical mass  distribution 
symmetr ical  about the equator plane, i. e. , for deviations of the geoid from the 
ellipsoid. Each even J of increasing order ,  while maintaining symmetry about 
the equator plane, "narrows down" the figure into a n  increasingly complex 
shape, while the sum of subsequent even J's describe the deviation of the geoid 
from the preceding shape. The even J's, however, all represent  spheroid 
shapes with identical northern and southern "hemispheres. 
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The asymmetry of the northern and southern "hemispheres" of the geoid, 
also referred to as "pear" shape, is taken into account by the odd surface har­
monics, which contain odd powers of s in@, especially by the principal coefficient, 
J3. Higher-odd-order J's are at least one o rde r  of magnitude sma l l e r  than this 
coefficient. 

The first zonal harmonic is shown in Figure 22. Figures 3 and 4 depict 
the zonal harmonics due to 5 3  and J d ,  and J5and J,, respectively. Of particular 
interest  is the ovoid form of J 3 ,  which is reponsible f o r  the "pear" shape of the 
earth.  

The Theorem of Clairaut 

In the past, higher o r d e r  zonal harmonics, and especially the odd har­
monics, have been neglected in the geopotential. This was mainly due to the 
methods of determining the coefficients used before the advent of the artificial 
ear th  satellites. Also, since the amplitudes of high harmonics - according to  

n
the quantity l/r in their  t e r m s  - decay very rapidly with altitude above the s u r ­
face, and their  effect on bodies in the ear th 's  external gravitation field dwindles 
rapidly with increasing o rde r  and/or altitude, coefficients above fourth order ,  
as well as the odd t e r m  J3, w e r e  usually neglected. Before the advent of the 
artificial satellites, the moon was the only moving body in the ear th 's  potential, 
but a t  its distance only the second harmonic is still discernible in its motion. 

Determinations of the J-coefficients Jzand J4 were  fundamentally based 
on geodetic surveys,  gravity iiieasureiiients , observations of the moon, and 
Clairnut's theorem. The latter deals with the form of a surface which encloses 
all the inatter of a rotating body with various density distributions, which con­
stitutes an equipotential surface (surface of constant potential) . Clairaut's 
formula ( 1743) is 

1
J = f - -111,

2 

where J is the second harmonics coefficient, in is the centrifugal factor at the 
equator w 2R/g (with w 2R = centrifugal acceleration at equator, g = gravita­e e 
tional acceleration at equator) , and f is the flattening of the ellipsoid of revolu­
tion, as assumed he re .  

2.  The figure is actually the second te rm of equation ( 3 4 ) .  
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South Pole 

South Pole 

FIGURE 2.  SECOND SPHERICAL HARMONICS TERM 
[-14266 P, ( s in@)] IN EARTH GEOID 
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North Pole 

South Pole 

FIGURE 3 .  THIRD AND FOURTH ORDER SPHERICAL HARMONICS 
TERMS [ 16 P3 ( s in+ ) ;  20 P4(s in+ ) ]  IN EARTH GEOID 
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North Pole 

South Pole 

FIGURE 4. FIFTH AND SIXTH ORDER SPHERICAL HARMONICS 
TERMS [ 1.3 P5 (s in@); -4P, (s in@)J IN EARTH GEOID 
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Obviously, Clairaut's formula relates the amplitude of the second har­
monic in gravity to that of the corresponding harmonic in the radius vector of 
the equipotential surface.  

Clairaut's formula, because of the approximations made in deriving it, 
is not accurate enough for practical use. A second order  extension of the theorem 
has been derived by Darwin ( 1899) , DeSitter ( 1924) , Jeffreys ( 1954) , Bullen 
( 1946) , Cook .( 1959) , et al. , resulting in equations involving higher orders  of 
the flattening, such as the third-order equation given by Kaula [ 11, 

With the use of Clairaut's theorem, a s  well as its extensions by the 
mentioned authors, the ear th  flattening - before the artificial satellites - could 
be derived separately in two ways: from a harmonic analysis of observed gra­
vity values (where the measured gravity anomalies are used to compute the 
absolute deflections of the vertical and, thus, the t rue  undulations of the geo­
potential surface;  also, to der ive the detailed gravity field) and from astrono­
mical observations of the constant of precession and the theory of the moon's 
motion ( DeSitter, 1915) , leading to J2. Higher J's could then be computed from 
the higher-order extensions of Clairaut's theorem, using the derived flattening, 
but when the first artificial satellites were flown, it was found that higher-order 
harmonic coefficients determined with this method did not agree  with the J's 
actually observed f rom the orbital perturbations of the satellites. The reason 
for this ser ious discrepancy is simply the fact that for the higher-order t e rms ,  
due to the i r regular  density distribution within the earth,  the basic assumption 
of an ellipsoid of revolution a s  the figure of the ear th  in the Clairaut formula 
and all higher-order extensions is an increasingly bad approximation of ,the geoid. 

The Geoid 

Distinction is made between the geodetic geoid, which depends on the 
surface irregularit ies of the earth,  and the geophysical geoid, which is governed 
by the internal i r regular  mass  distribution of the earth.  

The geodetic geoid is tile true figure of the earth.  While the actual ear th  
surface with its irregularit ies is not an equipotential surface,  the geophysical 
geoid, however, is required to be an equipotential level, identical with mean 
sea level and its continuation under the continents. The geoid, thus, is an 
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extremely complex shape, requiring a very large number of higher-order ha r  ­
monics for  its description. 

The reason for  the use of the geoid in geodesy is the following: In 
principle, the geometrical  form of the ear th ' s  surface can be found independent 
of observations of the potential and gravity, by geodetic triangulation methods, 
and then, given the values of these quantities on the surface,  Laplace's equation 
can be solved for all the exter ior  space. Because of the extreme complexity 
of the t rue  boundary, this would be an almost  hopeless task.  It is therefore 
universal practice to r e fe r  all geodetic observations to the gravitational equi­
potential surfaces  and to determine the form of these from geodetic observations. 
Because the sea-level equipotential surface is an internal surface on land, the 
gravity field is not computed fo r  the actual ear th  but f o r  a model earth which is 
related to the actual ear th  and which is bounded by an equipotential surface. 
The field so computed will not agree with that of the actual ear th  throughout 
space, but the model may be chosen so that it agrees  where observations can be 
made. This is the geoid. 

The geodetic geoid must  be computed point by point and cannot be given 
by few parameters ,  since it is not a mathematical surface but depends on the 
i r regular  distribution of visible and invisible masses  near  the ear th ' s  surface.  
For geodetic surveys, however, this point-by-point calculation would be imprac­
tical. Therefore, reference spheroids of revolution have been used instead. 
The reference spheroid is assumed to be an equipotential surface of the same  
volume and flattening as the geoid. 

The history of geodesy has seen  the following principal reference 
spheroids (all ellipsoids) : 

Germany (and severa l  European s ta tes)  . . .  .1841 . . .Bessel 

England . . . . . . . . . . . . . . . . . . . . . . . .  .1880.  . .Clarke 

U.S.S.R. . . . . . . . . . . . . . . . . . . . . . . .  . 1 9 3 8 .  . .Krassowski 

U.S. . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 8 6 6 .  . .Clarke 

U. S. . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1 9 1 0 .  . .Hayford 

U. S. . . . . . . . . . . . . . . . . . . . . . . . . . .  . I 9 6 3  . . .Kaula/Fischer 
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Determination of  t h e  Harmonics Coefficients 

A s  has been mentioned, J2in former times was determined from the 
moon's motion. For the lower amplitudes of the higher o rde r  harmonics, how­
ever ,  these effects are not discernible because r becomes too large. However, 
when the first artif icial  satellites were orbited, it was found that the gravita­
tional anomalies expressed by the higher-order harmonics characterize the 
potential field at their  altitudes. Thus , the existence and magnitude of J3 
( i .e.  , the 71pear'1shape of the ear th)  was first discovered from satellite 1958p2 
(Vanguard-1) , launched in March 1958 [ 91. 

The asphericity of the earth, represented by the spherical  harmonics, 
causes constant secular and periodic perturbations on a satellite orbit. By 
observing the secular and periodic perturbations , the zonal harmonics coeffi­
cients can be determined. Since the secular  changes, especially the orbital 
precession ( i .e. , the regressive rotation of the nodal line) and the advance of 
the perigee ( i .e . ,  the rotation of the apsidal line) , depend primarily on the 
even-numbered Jn' while the long-period oscillations in four of the five orbital 

elements ( eccentricity, inclination, longitude of ascending node ( right ascension) , 
and argument of perigee) are caused primarily by the odd harmonics [ 101 , the 
determination of the even J is usually done from secular  changes, while the n 
odd J are computed from periodic perturbations. An orbital perturbationn 
suffered by one particular satellite yields one linear equation between the 
harmonics. F o r  example, if p is the amplitude of the observed oscillation in  
eccentricity, we obtain an equation for the coefficients of the odd harmonics, 
J3, J5, J7. . . of the form [ 5 ]  

where the A ' s  are constants for  a particular orbit and depend mainly on the 
orbital inclination i and semi-major axis a.  By using several  different satel­
l i tes,  several  equations of the form ( 11) can be obtained. Therefore, if  a 
large number of satellites (widely distributed over as many inclinations as 
possible) is available for  analysis, an equally large number of J can be deter­n
mined. 

In solving the simultaneous equations (11), the main e r r o r  of the analy­
sis is introduced by the number of J to be determined remaining finite and all n 
t e r m s  higher than the highest desired J being assumed negligible. In fact, 
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however, these higher coefficients are not necessarily negligible, and since 
their  effect is - by necessity - lumped together in the computed Jn' in any 

one analysis of a given set of satellites there  are always seve ra l  different solu­
tions to  the J's, depending on the number of J's considered in  the algebraic 
equations. Thus, fo r  example, King-Hele, et al. [ 51, recently computed odd 
zonal harmonics up to  J21from eccentricity oscillations of 14 satellites, giving 
two different sets, i. e. , one with 5 3  t o  515, and the other with J 3  to  J21. 

Also, the equations are sometimes solved by several  differend methods 
to obtain m o r e  confidence in the results. For example, the equations may be 
solved for  three J's at a t ime, assuming the higher J's to  be zero,  in fours and 
fives, and a l so  with least-squares a,nd minimum-residual methods. The 
coefficients given by King-Hele [ 51 in the larger set a re  

( -2 .50  i 0 .01)  


( -0 .26 i 0. 01) 


( -0 .40  i 0.02)  


( 0  f 0.06)  x 


( - 0 . 2 7  i 0.06)  


(-1-0.36+ 0.08)  


( -0 .  65 f 0. I O )  


(+0.30 * 0 .08)  


( 0  f 0.11)  x 


(c0.58 f 0.11) 


X 

x 

x 

x 

x 

X 

x 

x 

The latest most  complete set of zonal harmonics, both even and odd 
coefficients, has been evaluated by Kozai. In 1963, Kozai [ 111 derived a set 
of values for  eight coefficients of zonal harmonics (up to and including J9)from 
the then available observations of secular motions of the node and the perigee 
and the amplitudes of long-periodic ternis of artificial satellites. Later, in 
1964, f rom precisely reduced Baker-Nunn observations of nine high-inclination 
satellites ( 2 8  degrees through 95 degrees) he produced [ 121 a new set of 
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thirteen coefficients (up to Ji4): 

52 = (1082.645 + 0.006) x 

J 3  = (-2.546 + 0.020) 

5 4  = ( -1 .649+ 0.016) 

5 5  = (-0.210 + 0.025) 

J6 = (+0.646 f 0.030) 

57 = (-0.333 * 0.039) 

5, = (-0.270 * 0.050)  

J, = ( -0 .053  * 0.060)  

J10 = ( - 0 . 0 5 4 i  0.050) 

Jii = (+0.302 * 0.035) 

512 = ( -0.357 1 0.047) 

5 1 3  = ( - 0 . 1 1 4 1  0.084) 

514 = (+0.179 f 0.063) 

x 


x I O W 6  


x 


X 


x 


x I O q 6  


x 
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x 


x 


x 
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The values of Kozai's even coefficients have been compared recently [ 131 
with two other sets of King-Hele/Cook and Smith. The agreement is excellent 
for all inclinations greater than 28 degrees, which was the smallest  inclination 
of available satell i te orbits.  It is therefore concluded that, as long as there 
are no satellites at inclinations between 10 degrees and 25 degrees the evalua­
tion of the even harmonics in the potential carr ied beyond the present status 
does not seem worthwhile. For the odd harmonics, this is not the case, since 
their  pr imary effect, the long-periodic changes ( e .g. , the amplitude of the 
oscillation in eccentricity) decrease to zero as the inclination tends to zero.  
For this reason, King-Hele felt justified to publish the odd zonal harmonics to  
J21,as given above, with a n  indication that J23and J25are small. 



Krause's Theory o f  t h e  Geoid Surface 

I�Kozai's value fo r  J2, 

5 2  = (1082.645 i 0.006) X 10-6 , 

is introduced in a relation of a third-order Clairaut theory [ I ]  , 

a value of f = 1/298.254 results for  the flattening of the reference ear th  ellip­
soid. Using this f to compute the theoretical value of J4for  the reference ellip­
soid assumed to be in hydrostatic equilibrium, one obtains -2.350 x as 
compared to the observed value of -1.649 x This discrepancy illustrates 
the increasing inaccuracy of Clairaut's (ellipsoid) theorem and its extension, 
if applied to higher-order harmonics. 

To find a m o r e  accurate relation between the radius vector of the ear th  
and its gravity field, thereby cleaning up the inconsistency in the older theories, 
Krause recently developed a new theory [ 2,3]  which essentially introduces the 
radius vector of the geoid, ra ther  than of an ellipsoid, consistently expressed 
to the same accuracy as the potential field it is related to. Since the new theory 
is kept general, it can handle all higher o rde r  zonal harmonics up to J with the n 
s a m e  internal consistency, which the older theories,  based on Clairaut, Darwin, 
Helmert, et a l . ,  are unable t o  do. Using Krause's  theory with Kozai's thirteen 
coefficients and introducing the radius vector of the geoid expanded in spherical  
harmonics up to J 1 4  in the similarly expanded geopotential, a new flattening of 
the ear th  can be computed 3, f = 1/298. 1840, which differs both from the old 
third-order value given above and from the flattening of the Kaula/Fischer 
ellipsoid used currently as a world datum, fo r  example, in trajectory computa­
tions ( 1/298.30) . It is believed that the value derived with Krause's  theory is 
m o r e  consistent with the observed spherical  harmonics coefficients. 

In his  theory [ 2 , 3 ] ,  Krause has  made use of h e  fact  that the generalized 
(equipotential) surface of the geoid, similarly to the geopotential, can be repre­
sented alternatively by two series expansions, one consisting of spherical liar­
monics, the other of powers of the sine of the latitude. When introduced in the 
geopotential, the chosen series must be of the s a m e  degree as the potential 

3 .  The value given in references 2 and 3 has been slightly corrected by the 
present wr i t e r .  
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function used. The author shows that the coefficients of the t e r m s  of the series 
(An in the spherical  harmonics se r i e s ,  B in the power series) are related to n 
the known oblateness coefficients J of the geopotential equation U and can be n 
computed from these. Insertion of the radius equation thus obtained in the 
equation of the total gravity acceleration in the direction of the normal yields 
the gravitational acceleration of the geoid as a n  expansion of surface harmonics,  
based on a consistent geoid geometry. Because of the relation between the A 

n 
( o r  B n)coefficients and the oblateness coefficients Jn' and assuming the surface 

to be of constant potential, the oblateness of the northern and southern "hemis­
pheres" and, thus, the mean meridional flattening f can be computed from the 
A n coefficients, relating now to the true geoid and the fu l l  set of observed Jn' 
ra ther  than to a reference ellipsoid, a s  in Clairaut's theory. 

F o r  the geoid radius, expanded in spherical harmonics,  

m 

-
R 

= A,  - C A P ( s i n $ )  + 3 A ~ , 2 c o s 2 ~ c o s 2 ( h - , (15)n n  A,)-
R n=I 

e 

in which the first sectorial  harmonic, with the associated Legendre polynomial 
Pi ( s i n + )  exactly given by 3 cos2@, is taken into account to express  the ellip­
ticity of the ear th  equator, Krause finds for the A-coefficients [ 2,  31 : 

00 

I Nv 1 . 3 - 5 . . . ( 2 v - 1 )  + - w2 . 4 . 6 . .  . 2 v  '21J G e  

1 N 

+ zB2(! J2 - we - I J 2 ) 1  

- wN - Bz)] 
X e 
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iA = --J  
K X K 

where 

w 2  . E3 
N e 

e GM 
= centrifugal factor at equator,o =  


03 
v i . 3 . 5  . . . (  2 v + 3 )  

B2 = [ v=o 
(-1) 

2
V v! 2! 

J2v+2 2 e  

and 

03 

x = i - (-1) 
n 3 - 5. 7 . .  . ( 2 n +  i) 

J2n - G  e2 4 6 ~ .. . Fn 
n=i 

If the first variation of U with longitude, as represented especially by 
the first sectorial  term, is taken into account as it was in equation ( 15) , where 
3 cos2@is used as a n  exact substitute of Pi (s in@), the geopotential of the earth 
becomes in inertial coordinates 

-
co 

GM 
r n 

n=2 

+ 3J2,2 (2)COS2$ cos 2 ( h  - ho)  + -2
i w" e cos2@1 

Since the three coniponents ( i n  polar coordinates) of the gravity are 
defined as 
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while the total gravity acceleration in the direction of the normal is 

the gravity, including the sectorial  t e rm,  can be given by determining the poten­
tial derivatives and expanding the sum of their  squares  according to equation 
(25) in  a series approximating the square-root of equation (25) . The result is 
[2Y 31 

-
2 

+ 2 [3J2 (+) 
where only the derivative of P2(sin@>with respect  to @ has been included 
[expressed as 

P; ( s in@)  = dP2(s in@) -- Ssin@ cos@ ] ,
d @  

while the higher order  derivatives have been neglected. 

ANALYS IS OF MODELS 

Model 1 (J2-Only) 

For computation of trajectories close to earth,  featuring smal l  central  
range angles, the effects of the equatorial bulge and other irregularities can 
usually be considered negligible, pr imari ly  because the flight times involved 
are relatively short .  In this model, it is therefore assumed that the ear th  is 
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an ellipsoid of revolution, symmetr ical  around all three axes. Except for the 
second harmonic, all higher order  effects of asphericity (which are three o r  
four orders  of magnitude sma l l e r  than J2)are  taken as zero.  

With these assumptions, the gravity equation (26) reduces to 

It would be more  accurate  to compute the gravity directly frum the 
potential of the ellipsoid, ra ther  than Irom the series approximation, equation 
(27) . The task of determining the potential of a homogeneous ell.ipsoid was a 
very formidable one and remained unsolved till  the end of the 1Sth century, 
despite attempts at a solution by Newton, Maclaurin, D'Alembert and Lagrange. 
Finally, Laplace succeeded in finding the general  solutior,, followed la ter  by 
Gauss and others.  The general  form of the potential of a homogeneous, triaxial 
ellipsoid for an exter ior  point involves an elliptic integral of the f i rs t  kind; 
hence, the components of the gravity force of the ellipsoid also contain elliptic 
integrals. F o r  the present case of the ellipsoid of revolution, the equations 
become considerably s impler ;  the elliptic integrals reduce to logarithmic ­
cyclometric integrals. The investigations of the above mentioned authors 
generally refer to homogeneous bodies. Clairaut was the first who investigated 
inhomogeneous bodies . 

A third-order relation of Clairaut 's  theory is given by Kaula  [ 11: 

Kaula gives a l so  

GM 0 = 3 .  986032 x io2' ~ n i ~ s e c - ~  398603.2 k ~ i i ~ s e c - ~= \ 

w =  


R = 63'78165.0 m e 
- 978.0300 cin - sec-.2 ge ­

22 




I 


Using these values, the centrifugal factor at the equator, m,  becomes 

w2 R e m =  = 0.003,467,773,255 , 
'e 

which is in agreement with reference 7. 

F o r  Model 1, the value f o r  J2used is the f i r s t  one of the set given 
recently by Kozai [ 12 1, equation ( 13) : 

Jz = 1 0 8 2 . 6 4 5 ~  (31)  

In a s t r i c t  sense,  this J2-value is not completely consistent with the 
above given value of g from Kaula [ 11. The equatorial gravity of the oblate e 
spheroid may be computed from 

GM
= ( J .  

R 
0 ,ge e 

where the factor CT accounts for two effects. First, it includes a correction to 
M 0because the mass  of the ear th 's  atmosphere, included in M , does not 

contribute to the gravitational acceleration a t  the surface,  and second, i t  modi­
fies the succeeding term,  valid for a sphere only, for the oblateness effects. 
In the Kaula value of equation (29) , or by necessity refers to the older J2and 
probably also to the older J4. However, the inconsistency is not felt to be of 
practical consequence for the present purpose. For the J2of equation (31) , 
u would becoine 0.  99Y1616959 (by solving equation ( 2 2 )  and computing (J  7 x ( 1-A), 
A = M

a t J M  (3 = 0. 8594 x [ 31) , so that the above equation results in 

= 978. 026 gal, 4 mgal lower than Kaula's value, which is presently accepted
ge 
as standard [ 141. 

It must be kept in mind that the assumption of all higher J being zero n 
introduces, in the s t r i c t  sense,  an e r r o r  in the model which is not taken into 
account by the above J2-coefficient, since its particular value has been deter­
mined from simultaneous algebraic equations involving 12 additional coefficients 
of higher order,  which were  different from zero.  However, it is assumed that 
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the  uncertainty caused by this fact  will be of no concern fo r  the present pur­
poses. This assumption is justified by the resu l t s  of this analysis. 

Introducing the J2-value in  equation (28 ) ,  one obtains the oblateness 

f = 0.0033528465 = I : 298.254 , 

which is consistent with the assumed geopotential. 

With the value for  R given in equation (29) , the polar ear th  radius e
becomes 

R P = R e( 1 - f )  (32) 

R = 6356780.0 m 
P 

R = 6378165.0 ni e 

and the general  radius at latitude + 

-_ 

EJ R cos2+ + R-sin2+ 
( 33) 

P e 

Since the assumption of an  ellipsoid is not fully consistent with the 
gravitation assumed (based on J2),a second body has been determined by using 
the first spherical  harmonic in a truncated expression of the type ( 1 5 ) .  By
solving equation ( 1 6 ) ,  ( 1 7 ) ,  ( 20) , (21)  and (22 ) ,  the coefficients are deter­
mined: 

A, = 0.9988510301 

A2 = 0.2236513952 x lo-' 

A, = - 0.1501014034 x 
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Neglecting the coefficient A,, the radius of the spheroid is then deter­
mined from 

R, = 6371028.026 - 14266.76846 P2(s in@), ( 34) 

where Pz(sin@) is the second-degree Legendre polynomial. 

The result ing spheroid is depicted in Figure 5. 

The total gravity, equation (27) , and the surface shape of the ellipsoidal 
Model 1, equation (33), as well as the surface of the body formed by the J2 
harmonic, equation (34) , are given in Table I. 

Model 2 (NASA Standard) 

F o r  trajectories of longer duration, such as those of upper stages,  as 
well as for near-earth orbits,  the geopotential exhibits anomalies such that its 
effect deviates from that of an  attracting ellipsoid of revolution. Fo r  a lmost  
all practical purposes, however, i t  suffices to add only the two next higher 
order  zonal harinonics to the potential and to consider the gravity anomalies 
averaged over all longitudes, thus retaining the rotational symmetry around the 
polar axis and rendering tesseral and sector ia l  t e rms  unnecessary. 

The second model is represented by the geopotential and the astro­
geodetic world datum as adopted by the Ad Hoc NASA Standard Constants 
Coininittee . [  141 in 1963 for  Project Apollo and other NASA programs. The 
standard is based on the Kaula/Fischer Ellipsoid of 1963. Irene Fischer  of 
the U.  S .  Army Map Service, in 1960, published a world ellipsoid based on an 
imposed flattening f = 1/298.30 (which at that time appeared to be the best  
available value from ear ly  artificial satellites) , by determining the ellipsoid 
of revolution which best fit the geoid contours derived froin astrogeodetic 
measurements [ 151. Kaula  la ter  [ 11, in 1963, published a new value for  the 
equatorial radius , 

R e :6378165.0 f 25.0 m , (35) 

which was a conipromise between Fischer 's  value [ 151 and a 1961 value by 
Kaula [ 161. The NASA Committee meeting at Goddard Space Flight Center in 
May 1963 adopted this value, along with the following constants [ 141: 

25 




- -  
- - -  

Worth Pole 

South Pole 

- J 2 - Spheroid 


:Ellipsoid I 

FIGURE 5. HEIGHT O F  J2-SPHEROID (MODEL 1) OVER REFERENCE 

ELLIPSOID O F  FLATTENING I.298.222 (MODEL 3) 
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TABLE I.  MODEL i 
~~ 

Latitude Radius Radius Height of 
North o r  South (Ellipsoid) (Spheroid) Spheroid over 

(de& (m)  (m)  Ellipsoid (m)  

90 (poles) 6356780.0 6356761.3 -18.7 983.2049 
85 6356941.6 6356923.8 -17.8 983.1663 
80' 6357421.7 6357406.6 -15.1 983.0516 
75 6358205.8 6358194.8 -11.0 982. 8641 
70 6359270.5 6359264.6 - 5.9  982.6093 

65 6360583.7 6360583.5 - 0.2 982.2944 
60 6362106.1 6362111.3 5 . 2  981.9286 
55 6363791.7 6363801.7 10.0 981.5228 
50 6365589.7 6365603.3 13.6 981.0890 
45 6367445.6 6367461.3 15. 7 980.6401 

40 6369303.1 6369319.4 16 .3  980.1897 
35 6371105.7 6371121.0 15 .3  979.7517 
30 6372798.5 6372811 . 4  12.9 979.3394 
25 6374329.7 6374339.2 9.5 978.9656 
20 6375652.3 6375658.1 5 . 8  978.6422 

15 6376725.7 6376727.9 2.2 978.3794 
10 6377517.0 6377516.1 - 0.9 978.1854 

5 6378001.7 6377998.9 - 2.8 978.0664 
0 (equator) 6378165.0 6378161.4 - 3.6  978.0300 

GM = 398603.2 km3sec-'0 
f = 1 : 298.30 

= 978.030 gal
ge 
J = 1.62345 (+0.00030) x 

H = -0.575 (*0.025) x 

D = 0.7875 (*0.0875) x 

R = 6356783.3 m 
P 

N w = 3461.414, x sec-' e 
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where the J, H, D coefficients apply to an alternate (older) form of the geopo­
tential, and the value 

u2R3 
N e = ­

e GM 

is fully consistent with the assumed parameters .  

In the modern notation, the oblateness coefficients become 

2
J = - H  = - 2 . 3 0 ~

3 5 

It is pointed out that the above set of constants is consistent within 
itself for most  practical  purposes. However, s ince the geometrical figure 
assumed is still an ellipsoid of revolution (equal northern and southern 
"hemispheres") , derived from 5 2  through a third-order relation of Clairaut's 
theory, equation (28) [ I ], it is at best  only an approximation and contains 
theoretically an  inconsistency. 

Table I1 lists the gravity of Model 2 (second column) , computed from 
equation (26) without the longitude-dependent te rm,  with J2, J3, J4 as given by 
equation (37), and in the third column the local radius of the associated Kaula/ 
Fischer  reference ellipsoid, computed from equation (33) with the data given 
in (35) and ( 3 6 ) .  

A s  an  illustration of the inherent inconsistency of the NASA Standard 
model, it is seen  that the gravity field at the North Pole is higher by 18 .4  mgal 
than at the South Pole, while the radial distance computed from the model is 
unable to account for  this 7tpear ' tshape. 

To compare the deviation of the ellipsoid from the ( h e r e  assumed) geoid, 
the shape of the geoid must  be computed. The new theory by Krause [ 2 , 3 ] ,  
provides a relatively simple method for doing this. To wri te  the geoid radius in 
an  expansion of the second, third and fourth surface harmonics,  the coefficients 
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TABLE 11. MODEL 2 
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65 

70 

75 

80 

85 

90s (pole) 

Difference 
( m )  

-13.0 
-12.8 
-12.2 
-11.2 
- 9. 8 

- 8 . 2  

- 6.3 
- 4 . 4  
- 2.3 
- 0 . 4  

1 . 4  
2 . 8  

4 .0  
4. (i 
4 . 7  
4. :3 
3 .  2 

1. cc 

0 

- 2 .0  
- 4.0 
- 5.9 
- 7 . 4  
- 8 . 5  
- 8.9 

- 8.6  
- 7 . 1  
- 5 .6  
- 3 . 1  
- 0 . 1  

3.  7 


6 .  5 

I).7 


12.5 


14. ti 

1 5 . 9  

it;. 4 
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A in equation (15) must be determined with J2, J3, J4, equation ( 3 7 ) ,  from n 
equations (16)  through (22) . 

One obtains 

A, = 0.9988805375 

A, = 0 

A2 = 0.2236440156 x 

A, = - 0.2304227311 x 

A, = - 0.3313107217~ 

with which the geoid surface of Model 2 can be expressed by 

R2 = 6371024.88 - 14264.38 * P2(s in@)  + 14.69 P,(sin@) 

+ 21.13 * P4(s in@)  ( m )  ( 39) 

where the P (s in@)are the Legendre polynomials of argument s i n @ .
n 

Column 4 of Table I1 lists the resul ts  of equation (39) , while the devia­
tions of the ellipsoid from the geoid are given in column 5. It is seen that the 
NASA Standard Model results in an ear th  radius which is 13m below the geoid at 
the North Pole, 16.4m above the geoid a t  the South Pole, and between zero and 
12m above o r  below it in the intermediate latitudes. 

With 

the mean meridional oblateness becomes 

f = 0.0033525944 = 1 : 298.276, 

differing slightly f.rom the Standard value of 1 : 298.30 . 
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The NASA Standard, he re  called Model 2, adopted by the Ad Hoc Com­
inittee in 1963, has served and is serving its purpose well, which is to ensure 
accuracy and consistency between the various NASA agencies and contractors 
participating in the space program. While during 1961-63 a real atternpt was 
made to select a set of constants which might be termed the "best available at 
the time" [ 14.1, the chief qualification of the adopted set was standardization. 
Since the adoption of the NASA Standard for  Apollo and other space programs, 
new and better determinations of the geographical (and astrodynamic) constants 
have been made. The Standard of 1963, still valid today, is therefore not based 
on more  current  information; however, with the present status of the Apollo 
program, it would probably be ill-advised to  update the Standard at this time. 

The following models make use of the more recent determinations in 
various combinations. 

Model 3 (New J2 
J3 p  J4' 

Similar to the preceding analysis, a model i s  assumed which takes the 
"pearTtshape of the ear th  into account as well as the second even zonal harmonic, 
but not any dependence of the geopotential on longitude. The spherical  harmonics 
coefficients are taken from Kozai [ 121, equation ( 13), 

J2 = 1082.645 x 

J 3  = - 2.546 x Y ( 42) 

5 4  = - 1.649 x 

where they have actually been determined together with ten additional coefficients , 
which are he re  assumed zero.  This introduces a slight e r r o r  of no practical 
concern for the present purpose. 

Gravity is again computed from equation (26) ,  without the sectorial  
t e rm,  with J2, J3, J4 as given in ( 4 2 ) .  

According to the new J-coefficients, the o-factor in the equation for  the 
equatorial gravity acceleration must now be slightly adjusted; ge becomes now 

= 978.029 gal
ge 

instead of the Standard value 978.030 gal. 
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The reference ellipsoid (of revolution) postulated for  this model is 
required to be consistent with the geopotential used. 

Using Krause's  theory, the A-coefficients, equation ( 16) through ( 2 2 ) ,  
in equation ( 15) are obtained. 

A, = 0. 9988804206 \ 

A2 = 0.2236788408 x (43) 

A, = - 0.2550678850 x 

A4 = - 0.3160571410 x 

and the radius of the assumed geoid becomes 

R3 = 6371024.14 - 14266.61 P2( s in@)  + 16.268 P3(sin@) 

+ 20.16 Pd(sin@) ( m )  . ( 44) 

The results of this equation for the geoid surface are listed in column 4 
Gf Table 111. It can be seen that the polar radii  are 

R = 6356794.0 m 
pN 

R = 6356761.4m 
PS 

so that the mean meridional flattening, equation ( 4 0 ) ,  becomes 

f = 0.003353206 = 1 : 298.222 . 

Comparison with the geoid of Model 2 shows that the new values for 
J2, J3, J4 cause the Model 3 geoid to be smaller at most  latitudes (by 2 . 3  m at 
the North Pole, 5 . 5  in a t  the South Pole, and by 1 . 2  m and 0. 6 m at 45N and 
45S, respectively) . 

F o r  the reference ellipsoid, the equator radius imposed is the currently 
accepted value due to Kaula, equation (35) . With the above flattening, the polar 
radius of the ellipsoid then becomes 
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T A B U  III. MODEL 3 


Radius Radius Difference 
Ellipsoid Geoid (Height of 

( m )  ( m )  Ellipsoid 
(m)  

90 983.2239 6356777.7 6356794.0 -16.3 
85 983.1848 6356939.4 6356955.4 -16.0 
80 983.0685 6357419.5 6357434.8 -15.3 
75 982.8786 6358203.7 6358217.9 -14.2 
70 982.6205 6359268.4 6359281.2 -12.8 

N 
65 982.3020 6360581.8 6360592.8 -11.0 
60 981.9326 6362104.3 6362113.3 - 9.0 

R 55 981.5234 6363790.1 6363796.8 - 6.7 
50 981.0866 6365588.3 6365592.6 - 4.3 
45 980.6354 6367444.4 6367446,4 - 2.0 

H 
40 980.1835 6369302.1 6369302.0 0.1 
35 979.7449 6371105.0 6371103.0' 2.0 
30 979.3328 6372797.9 6372794.5 3.4 
25 978.9601 6374329.3 6374324.9 4.4 
20 978.6382 6375652.0 6375647.3 4.7 

15 978.3771 6376725.6 6376721.2 4.4 
10 978.1851 6377516.9 , 6377513.5 3:4 
5 978.0679 6378001.7 6377999.8 1.9 
0 978.0294 6378165.0 6378165.0 0 
5 978.0705 6378001.7 6378004.0 - 2.3 

10 978.1900 6377516.9 6377521.5 - 4.6 
15 978.3840 6376725.6 6376732.4 - 6.8 
20 978.6464 6375652.0 6375660.8 - 8.8 
25 978.9689 6374329.3 6374339.4 -10.1 
30 979.3416 6372797.9 6372808.8 -10.9 

S 
35 979.7527 6371105.0 6371115.6 -10.6 

O 4 0  980.1896 6369302.1 6369311.8 - 9.7 
u 45 980.6389 6367444.4 6367452.2 - 7.8 

50 981.0871 6365588.3 6365593.4 - 5.1 
55 981.5205 6363790.1 6363792.1 - 2.0 

H 
60 981.9261 6362104.3 6362102.7 1.6 
65 982.2919 6360581.8 6360576.5 5.3 
70 982.6070 6359268.4 6359259.6 8.8 
75 982.8623 6358203.7 6358191.8 11.9 
80 983.0501 6357419.5 6357405.2 14.3 

. 85 983.1650 6356939.4 6356923.6 15.8 
90 983.2037 6356777.7 6356761.4 16.3 

-
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RP = R e( I  - f )  = 6356777.70m , 

and the ellipsoid shape can then be computed from equation (33). Results are 
listed in column 3 of Table m. The deviations of the ellipsoid from the geoid 
are given in  column 5. The largest  excursions are again at the poles, with 16.3 
m height difference. 

Higher-Order Bodies w i t h  Equator Symmetry 

Model 4a (Triaxial Ellipsoid) . In the preceding three ellipsoids, the 
longitude dependence of the geopoiential has not been taken into account. For 
the present model, it is assumed that the geoid can be better approximated by 
a triaxial ellipsoid. How well it agrees  with the geoid is one of the objectives 
of this investigation. 

In a tr iaxial  ellipsoid, the equator and all parallel  sections exhibit a 
certain ellipticity, expressed - in the geopotential - by the sectorial  coefficient 
J2, 2. The body is symmetr ical  with respect to the equator plane; hence, the 
odd-order t e rms  in the spherical  harmonics series of the geopotential ( m o r e  
exactly, of the radius vector of the surface) are  zero.  Thus, the ear th  is now 
assumed to be no longer symmetrical  around the rotational axis. 

The general formula of a triaxial ellipsoid is 

where R and R are the two equatorial semi-axes. By introducing polar 
e0 el 

coordinates, Krause [ 3 ]  has derived a general formula fo r  the radius vector, 

where E is the mean equatorial radius, determined by the astrogeodetic and e 
gravimetric methods of geodesy [ 17,181 and currently assumed to be [ I ]  
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-
R = 6378165.Om . e 

The symbol C$ is the geocentric latitude of the parallel, h is the longitude of 
the point on the surface,  measured positive east of Greenwich, f is the merid­
ional flattening of the ellipsoid, f is the ellipticity of the equator (and all  e 
parallel sections) , and h is the longitude of the apsidal line of the equatorial

0 

ellipse ( i .e. , the angle between the radius vector to the reference meridian on 
the equator and the semi-major axis of the equator ellipse, positive eas t  of 
Greenwich) , as well as the longitude of the associated parallel ellipses in both 
"hemispheres. I f  Kaula [ 71 gives ho = - 14.5 degrees * I.5 degrees. In Ref­

erence I,he quotes -8 degrees to -25 degrees;  however, more  recent data 
indicate an improved value of [3 ]  

h = - 18 degrees f 3 degrees ( 47)
0 

Thus, the semi-major axis of the equator ellipse is rotated by 18 degrees 
west of the Greenwich meridian. Consequently, the largest equator radius is 
located approximately 600 statute miles north of Ascension Island in the Mid-
Atlantic, and - diametrically opposed - in the vicinity of the Solomon Islands 
in the Pacific, while the shortest  radii are approximately 500 statute miles  
south and west of Ceylon in the Indian Ocean and about 1800 statute miles west 
of P e r u  in the Pacific Ocean. 

By solving Krause's  radius equation, equation (15) , twice f o r  A = A 
0 

and h = h + 90 degrees ,  respectively, at the equator (C$ = 0) and introducing
0 

the derived expressions for R and R in the definition of the flattening ( o r  
oblateness) , e0 e l  

R - R  e o  e lfe = - > 

R e 

one obtains a simple expression for the ellipticity of the equator, viz. , 

6fe = 6 A2,2 = ;J2, 2 ( 49) 
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The best  current  value for  J2, is given by Kaula [ 71 : 

J2,2 = (1. 8 *  0.1)  x . (50)  

Using the most  recent set of oblateness coefficients, equation (13) ,  in 
the equation for  the factor x, equation (22 ) ,  one obtains 

x = 0.9981691858 . ( 51) 

With x and J2,2, equation ( 5 0 ) ,  equation (49) yields 

fe = 10.81980906 x = I : 92423 . ( 52) 

F rom equation (48) it is then found for  the difference between the semi-
major  and semi-minor axis of the equator 

-
With the mean equatorial radius, Re '  according to equation (35) , the 

longest radius of the equator becomes 

AR-
R + - - e - 6378199.5 m e 2 

and the shortest  radius 

6378130.5 m 

at the geographical locations described above. 

The sectorial  harmonic is depicted in Figure I .  

The flattening f of the triaxial ellipsoid must be the s a m e  as for  the 
"best" geoid (Model 5a and 5b) treated later, since the flattening equation, 
equation ( 58) , contains only even zonal harmonics, in accordance with the 
symmetry behavior of the latter. With the even J of equation (13),  equationn
(58) yields 
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f = 0.003353633015 = 1 : 298.184 . 

The polar radii  then become 
-

RP = ( 1  - f ) R  e = 6378775.0 m . 

The surface of the triaxial ellipsoid has been computed fo r  various 
latitudes and longitudes from equation ( 4 6 ) .  Results are given in Table IV, 
column 2. 

The gravity of the Model 4a ellipsoid can be determined from equation 
(26) . A l l  available even J are used, equation (13),  with the odd zonal coeffi­n 
cients set equal to zero according to the assumed symmetry with respect to 
the equator plane. With x as given in equation (51) , the factor CT becomes 
0. 9981683280, and the mean gravitation a t  the equator is then 

differing by 2 mgal from Kaula's Standard value. 

Results are presented in Table N,column 5. 

Model 4b (Symmetrical  Geoid) . With the oblateness coefficients up to 
J14 readily available, it is of interest to investigate the deviation of the above 
triaxial ellipsoid from the surface of a quasi-ellipsoid, o r  ra ther  "symmetrical  
geoid, ' I  derived from a series expansion of the known even zonal harmonics-
equivalent to the above employed gravity expansion. Using Krause's  theory and 
solving equations ( 16) through ( 22) , the coefficients in equation ( 15) are found 
to be 

A, = + 0.9988800610 

A, = + 0.2236730320. x - I O - '  

A, = - 0.3180618021 x 

A, - 0.6471848752 x IO-6 
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TABLE IV. MODELS 4a AND 4b 

I Longitude Radius of Radius of Height of a
3 Tri -ellipsoid Symm. Spheroid Spheroid 

WOG (m) (m) (m) 

6356775.0 6356775.0 0 


~ 

180 6358203.0 6358203.0 0 
150 6358200.9 6358200.9 0 
120 6358199.0 6358199.0 0 
90 6358199.3 6358199.3 0 

120 60 6358201.4 6358201.4 0 
150 30 6358203.2 6358203.2 0 

.-

180 6362109.2 6362114.2 4.9 
150 6362101.4 6362106.3 . 4.9 
120 6362094.5 6362099.3 4.8 
90 6362095.4 6362100.2 4.8 

120 60 6362103.2 6362108.1 4.9 
150 30 6362110.1 6362115.1 4.9 

0 180 6367456.9 6367461.7 4.7 
30 150 6367441.2 6367446.0 4.7 
60 120 6367427.4 6367432.0 4.6 
90 90 6367429.2 6367433.8 4.6 
120 60 6367444.8 6367449.6 4.7 
150 30 6367458.7 6367463.5 4.8 

180 6372818.1 6372819.3 1.1 
150 6372794.6 6372795.6 1.0 
120 6372773.7 6372774.7 1.0 
90 6372776.4 6372777.4 1.0 

120 60 6372800.0 6372801.0 1.0 
150 30 6372820.8 6372822.0 1.2 

180 6376751.4 6376849.'3 -2.1 
150 6376722.0 6376719.9 -2.1 
120 6376696.0 6376693.9 -2.1 
90 6376699.4 6376697.2 -2.2 

120 60 6376728.7 6376726.6 -2.1 
150 30 6376754.8 6376752.7 -2.1 

180 6378192.9 6378192.9 
150 6378161.4 6378161.4 
120 6378133.5 6378133.5 
90 6378137.1 6378137.1 


120 60 6378168.6 6378168.6 

150 30 6378196.5 6378196.5 


Gravity of 
Spheroid 

(gal) 

983.1815 


982.8385 

982.8376 

982.8367 

982.8368 

982.8378 

982.8386 


981.9077 

981.9041 

981.9009 

981.90'13 

981.9049 

981.9081 


980.6259 

980.6186 

980.6122 

980.6131 

980.6203 

980.6267 


979.3374 

979.3263 

979.3166 

979.3179 

979.3288 

979.3384 


978.3883 

978.3747 

978.3627 

978.3643 

978.3778 

978.3898 


978.0448 

978.0303 

978.0175 

978.0192 

978.0337 

978.0465 


45N/45S 


30N/30S 


15N/15S 


a. 	 EOG = East of Greenwich 
WOG = West of Greenwich 
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A, = - 0.2704952265 x 

A,, = - 0.5409904530 x 

Ai2 = - 0.3576547995 x 

Ai4 = + 0.1793283168 x 

The surface equation, equation ( 15) ,  then becomes 

R4 = 6371021.84 - 14266.235 - P2(sin@) + 20.29 P,(sin@) 

- 4.13 P6(sin@) + 1.73 P,(sin@) + 0. 345 . Plo(sin@) 

+ 2.28 Pi2(sin@) - 1.14 - Pi4(sin@) 

+ 34.51 * cos2+ - c o s 2 ( h  + 18") ( m )  . ( 55) 

Equation ( 55) has been computed for some values of @ and h ; resul ts  
are given in column 3 of Table IV. The deviation of the symmetrical  geoid from 
the true triaxial ellipsoid is listed in the fourth column of Table IV. Agreement 
is seen to be extremely good. Height differences are around 5m in the higher 
latitudes. The l a rges t  height difference occurs around 55 degrees North o r '  
South latitude, with over 6m for  all longitudes. 

"Best" Geoid Bodies 

Model 5a ("Best" Geoid with Sectorial Term)  . The most realistic model 
of the ear th  and its potential field must obviously make use of all available 
spherical harmonics coefficients , obtained from real- world observations. 
Using the theory developed recently by Krause [ 2 , 3 ]  , it is - as shown above -
relatively simple to express  the geoid surface, assumed an equipotential level, 
in an expansion of spherical  harmonics and appropriate coefficients. This "true" 
geoid is assumed as Model 5a of this investigation. 

F o r  the basic imposed constants (mean earth radius a t  equator, rate 
of the ear th 's  rotation with respect to inertial space, and the gravitational 
parameter  of the earth) the best  currently available values [I] are chosen: 

-

R = 6 378 165.0 m 
e 

w = 0.729211585 x sec-' 

39 




- 

GM = 398603.2 + 3.0 km3secm20 

and for  the additional parameters  

J 2 , 2  = ( 1 . 8  f 0.1) x 


A = - 18" + 3" . 
0 

Consistent with the above values, the mean equatorial gravitation is 

-
= 978.0320 gal (see Model 4a)

ge 

Solving again equations ( 16) through (22) fo r  all available J
n' 

including 

odd orders ,  equation ( 13) , the following A -coefficients of equation ( 15) are 
nobtained: 


A0 = + 0.9988800610 


A, = 0 


A, = + 0.2236730329 


A, = - 0.2550669802 


A, = - 0.3180618021 


A5 = - 0.2103851762 


A6 = i-0.6471848752 


A, = - 0.3336107793 


A, = - 0.2704952265 


x l o m 2  


x 


x IO-5 


x 


X 


x 

x 

A, = - 0.5309721113 x 


Ai0 = - 0.5409904530 x IO-' 


AI, - + 0.3025539200 x 
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A12 = - 0.3576547995 x 


Ai3 = - 0.1142090956 x I O - 6  
 (
A14 = + 0.1793283168 x IOm6 

with 

x = 0.9981691858 

B2 = 0.3383437858 x IO-' 

The equation for  the surface of the geoid becomes then4 

R5 = 6371021.844 - 14266.235 P2( s in@)+ 16.268 P3(sin@) 

+ 20.286 P4(sin@)+ 1 .34  P5(sin@)- 4.127 P6!sin@) 

+ 2.127 P7( s in@)+ I. 725 P,(s in@) + 0.338 P9(sin@) 

+ 0.345 Plo(s in@)  - 1.929 Pll(s in@) + 2.28 P12(s in@)  

+ 0.728 P13(sin@)- 1.144 P14(sin@) 

+ 34.505 cos2@cos 2 ( h  + 18") , (m)  ( 57) 

where P ( s in@)are the Legendre polynomials of argument sin@ '. n 

By writing the radius equation, equation (15 ) ,  for  the poles ( @  = * 90 
degrees) , one equation each results for  the northern and the southern "hemi­
spheres,  ' I  which since 

-
2R e 

lead to an expression for  the mean meridional oblateness of the geoid [ 2 ,  31 

4. Some of the amplitudes (coefficients) of the geoid-equation in reference 
3 have been found to be slightly incorrect.  The values are corrected here .  

5. See Appendix A.  

I - ...... . , 



v 1 - 3 .  5 . . . ( 2 v - l )  

v = l  2 . 4 9 6  . . .  2v ] J2v 

where x anb B2 are given in equation ( 56) and w" = 3461.414 x sec-l . e 

With Kozai's harmonics coefficients up to J,,, equation (58) yields 

f = 0.003353633015 = 1 : 298.184 , 

which is different f rom the currently accepted (Standard) value of 1960, viz. , 

f = 1 : 298.30 , 

which is consistent with the old J2, equation (37) , over a third-order Clairaut­
type expression only, as mentioned earlier. 

The surface of the l lbest l lgeoid, equation (57) , and its gravity, equa­
tion (26) , have been computed and are tabulated in Table V for  various latitudes 
and longitudes. It can be seen  that the geoid, in accordance with the fact that 
of all t e s se ra l  harmonics only the first sectorial  was included, .is symmetrical  
around a plane defined by the major  axis (a t  h = - 18 degrees)  of the equator
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ellipse and the axis of rotation. If higher tesserals were  taken into account, 
this last symmetry would a l so  disappear. 

The sectorial  harmonic at the equator is shown in Figure 1. The curve 
depicts (greatly exaggerated) the height of the "best" geoid over the rotationally 
symmetr ic  geoid of Model 4b around the equator. A t  latitudes 45N and 45S, 
the amplitudes of the harmonic, for  equal meridians, a r e  half their  value at 
the equator. 

Because of the sectorial  t e rm depicted, the longest equator radius 
(a l so  the longest radius vector t o  all latitudes) is at 162 degrees eas t  and a t  
18 degrees west of Greenwich, with 6 378 199,5 m .  The shortest  radial vector 
is at 72 degrees east and 108 degrees  west  of the pr ime meridian, with 
6 378 130.5 m .  The difference amount to 69.0 m .  
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TABLE V. GEOID 

Latitudes Lo1 itude a Radius of Gravity of Lo itudea
Geoid Geoid 

EOG 

SON 
(North 
Pole) 

75N 0 
30 
60 

6ON 0 
30 
G O  

45N 0 
30 
G O  

30N 0 
30 
G O  

15N 0 
30 
60 

0 

(Equator )  30 


60 


15s 0 
30 
G O  

30s  0 
30 
G O  

45s 0 
30 
G O  

60s 0 
30 
60 

75s 0 
30 
G O  

90s 
(South 
Pole)  
~~ 

(4 (gal)  EOG WOG 

6356793.9 983.18807 

180 6358217.6 982.84373 90 90 
150 6358215.4 982.84275 120 G O  
120 6358213.6 982.84189 150 30 

180 6362118.1 981.90820 90 90 
150 6362110.3 981.90457 120 G O  
120 6362103.3 981.90136 150 30 

180 6367458.7 980.62507 90 90 
150 6367443.0 980.61782 120 G O  
120 6367429.0 980.61140 150 30 

180 6372812.7 979.33540 90 90 
150 6373789.0 979.32452 120 G O  
120 6372768. 1 979.31489 150 30 

180 6376743. 6 978.38634 90 90 
150 6376714.2 978.37281 120 G O  
120 6376688.2 978.36083 150 30 

180 6378192.9 978.04484 90 90 
150 6378161.4 978.03034 120 G O  
120 6378133.5 978.01750 150 30 

180 6376755.0 978.39020 90 90 
150 6376725.6 978.37667 120 G O  
120 6376699.6 978.36469 150 30 

180 6372825.9 979.33889 90 90 
150 6372802.2 979.32801 120 G O  
120 6372781.3 979.31838 150 30 

180 6367467.7 980.62674 90 90 
150 6367448.9 980.61949 120 G O  
120 6367435.0 980.61307 150 30 

180 6362110.2 981.90722 90 90 
150 6362102.3 981. 90360 120 G O  
120 6362095.4 981. 90039 150 30 

~ 

180 6358188.5 982.83336 90 90 
150 6358186 .3  982.83239 120 G O  
120 6358184.5 982.83153 150 30 

6356756.1 983.17496 

Radius of Gravity of 
Geoid Geoid 
(4 (gal )  

6358213.8 982.84200 
6358215.9 982.84298 
6358217.8 982.84384 

6362104.2 981.90178 
6362112. 1 981.90540 
6362119.0 981.90861 

6367430.8 980.61223 
6367446. 6 980.61948 
6367460.5 980.62590 

6372770. 8 979.31614 
6372794.4 979.32701 
6372815.4 979.33664 

6376691.6 978.36238 
6376721.0 978.37591 
6376747.0 978.38789 

6378137.1 978.01916 
6378168.6 978.03366 
6378196.5 978.04650 

6376702.9 978.36623 
6376732.3 978.37976 
6376758.4 978.39174 

6372784.0 979.31963 
6372807.7 979.33050 
6372828.6 979.34013 

6367436.8 980.61390 
6367452.5 980.62115 
6367466.5 980.62757 

6362096.3 981.90080 
6362104.1 981.90443 
6362111.1 981.90764 

6358184.7 982.83164 
6358186.8 982.83261 
6358188.7 982.83347 

a. 	 EOG = East  of Greenwich (deg rees  
WOG = West of Greenwich (deg rees )  

43 


0 



A t  45 degrees North and South parallel, the difference between the 
semi-major and semi-minor axis, as stated above, must  be one-half of this 
value. It is 34.5 m .  

At the poles, it is seen  that the radial  vector at the North Pole is longer 
than at the South Pole. The difference in height is 37.8 m,  which accounts for 
the rrpearr lshape of the earth, suspected already in 1959 by O'Keefe [ 91. The 
gravity at the North Pole is higher by 13. I1 mgal than at the South Pole. 
Around the equator belt, the gravity var ies  by as much as 31.74 mgal (between 
the longitudes 72 degrees  and 162 degrees east). The mean equatorial gravity 
must  be the same  as for  the triaxial ellipsoid, Model 4a;i. e. , 

-
'e = 978.0320 gal . 

Model 5b ( t tBes t t rGeoid without ­. .. Sectorial Term)  . For purposes of cam­
parison with models featuring circular equators, it is a lso  of interest  to deter­
mine the shape of the t tbes t t rgeoid, with all  available zonal harmonics coeffi­
cients, based on a circular  equator. Model 5b is therefore obtained by solving 
equation (57) without the last (sectorial)  t e rm.  Since the sectorial  harmonic 
at the equator has already been determined in Figure I ,  the desired circular-
equator shape is obtained by subtracting it f rom the radius vectors of Model 5a. 

COMPARISON OF MODELS 

In accordance with the different assumptions used, the various geo­
graphical theories to be compared here  define geometrical  bodies which differ 
from each other and from the geoid. Also, they lead to different gravity values 
for identical locations on the body. P r imary  attention is directed towards the 
deviations in geometries.  

Figure 6 shows the radius vector as a function of latitude of Models 1, 
2, and 3 ,  referenced to the same body, i. e. , the "best" geoid without the 
sectorial  t e rm (Model 5b) . In all three cases,  the bodies a r e  not ellipsoids, 
but spheroids of revolution symmetrical  around the equator plane, s ince they 
a r e  based on superimposed spherical  harmonics.  It is seen  that the widest 
deviation from the geoid is exhibited by Model 1, which takes into account 
solely the second order  zonal harmonic, J2. A t  the North Pole, the difference 
is -32.6 m ;  at the South Pole, +5.20 m. Since the spheroid of Model I ,  a s  
shown on Table I, differs from the Model 1 ellipsoid (flattening 1/298.254) by 
as much as -18.7 m at the North and South Pole, the deviation of the Model I 
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FIGURE 6 .  HEIGHT O F  MODELS 1, 2 AND 3 (SPHEROIDS) 
OVER "BEST" GEOID WITHOUT SECTORIAL TERM 
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ellipsoid from the reference geoid is less at the North Pole, amounting to -13. 9 
m, and higher (23 .9  m) at the South Pole. 

The spheroids of Models 2 and 3 are based on the old and the new set of 
coefficients Jz, J3, J4, respectively, as given by equations (39) and (44) . In 
general, they agree very well with the reference geoid, exhibiting deviations of 
less than 5 m .  At the poles, the deviation of the Model 2 spheroid from the 
reference line as well as from the improved Model 3 spheroid is larger ,  pri­
marily due to the changes in J2 and J3. 

A s  in the case of Model I ,  it is of interest  to determine the deviation 
of the Model 2 spheroid from its associated ellipsoid, as given in Table 11. The 
height of the spheroid based on the Standard values of Jz, J3, 54 over the ellipsoid 
with consistent flattening 1/298.30 is shown in Figure 7. Also plotted is the 
height of the l lbest l lgeoid without the Jz, 2-term (Model 5b) . The agreement 
between the two Model-2 bodies is good; the largest  difference is at the South 
Pole, with 1 6 . 4  m .  As is to  be expected, the spheroid agrees better with the 
"best" geoid than the ellipsoid. The influence of particularly the odd zonal 
harmonics beconies manifest at the South Pole, where the Standard Ellipsoid, 
as used presently by NASA, deviates by as much as 27.2 m from the Model 
5b-geoid. 

A s t i l l  better approximation to the "bestT1geoid with circular equator 
can be given with the spheroid of Model 3, as depicted in Figure 8. Here, the 
spheroid height is referenced to the associated ellipsoid of flattening 1/298.222, 
derived from the set of improved J2, J3, and J4. The deviations of the spheroid 
from the ellipsoid are numerically very s imi l a r  to those between the Model 2 
bodies, while the agreement of the ellipsoid with the circular-equator geoid has 
been improved considerably, except for  the latitudes around 20N and 30S ,  where 
the gap is still almost 10 m .  The agreement of the spheroid with the "best" 
geoid i s  generally better than 5 m.  

The height of the "best1I geoid (Model 5a) has been computed from the 
data of Tables IV and V, and is presented in Figure 9 (greatly exaggerated), 
referenced to the triaxial ellipsoid of Model 4a. Both bodies are  based on 
expansions of spherical harmonics up to and including J14,with the latest  
available values fo r  the coefficients. The sectional cut is along the pr ime 
meridian. The l lpearlTshape of the ear th  is clearly discernible. Since the 
mean equatorial radius is the s a m e  for  both bodies (as well as the sectorial  
harmonic), they sha re  the s a m e  equator. A t  the poles, however, deviations 
of the geoid a r e  observable, amounting to 18. 87 m a t  the North Pole, and to 
-16.67 m at the South Pole. In the intermediate latitudes, the deviations are 
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South Pole 

FIGURE 7. HEIGHT O F  MODEL 2-SPHEROID AND O F  "BEST" GEOID 
WITHOUT SECTORIAL TERM, OVER STANDARD ELLIPSOID (1/298.3) 
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FIGURE 8. HEIGHTS O F  MODEL 3-SPHEROID AND "BEST" GEOID WITHOUT SECTORIAL TERM 
OVER ELLIPSOID O F  FLATTENING 1/298.222 (MODEL 3) 

L 



North Pole 

South Pole1- 1 Geoid 1 
Ellipsoid 

FIGURE 9. HEIGHT O F  "BEST" GEOID (MODEL 5) OVER TRIAXIAL 
ELLIPSOID O F  FLATTENING 1/298.184, ALONG PRIME MERIDIAN 



less, with -8.5 m at 20N and 7.7 m at 30s. The height differences a r e  a l so  
plotted in  Figure 10, on a recti l inear grid, for  a meridional section at Greenwich 
longitude. 

According to the different harmonics coefficients used in the potential 
equation, the gravity of the analyzed models differs in each case. Using the 
gravitation of the 77best17geoid (Model 5a) as tabulated in Table V, as common 
reference, the gravities of each model were  computed fo r  a meridional section 
along the pr ime meridian and plotted in Figure I I .  A s  is to be expected, the 
gravity of the triaxial ellipsoid (Model 4a), listed in Table Tv, agrees  best  
(generally by better than &3mgal) with the '7best77geoid. The other models, 
with gravity values determined from differing values and numbers of oblateness 
coefficients, show generally identical behavior, with significant deviations 
(up to 35 mgal) at the poles and equator, in accordance with the recent findings 
of a more pronounced influence of the odd zonal harmonics,  particularly J3. 

For Model I ,  the exclusive use of J2apparently compensates somewhat 
around the North Pole for the deviations in Models 2 and 3, which a r e  obviously 
caused by the third order  zonal harmonic, the only additional additive amplitude 
at these latitudes besides J2. A t  the lower latitudes, Model 3 -with the improved 
set of coefficients - agrees best of all three models with the reference, as is 
to be expected. However, the improvement is only very  minor (<I mgal) , 
leading to the observation that the effects of improving the oblateness coefficients~~ 

( r a t h e r  than increasing their number beyond J4) a r e  apparently revealed more  
significantly in the geometries than in the gravities of the bodies used. 

CONCLUSIONS 

I .  A new ear th  figure model, o r  geoid, has been developed [ 2 , 3 ]  and 
computed here,  consis tent with the most recent oblateness coefficients available. 

2 .  The currently used NASA Standard ellipsoid differs from this "best'' 
geoid by -10.6 m a t  the North Pole, 9 .6  m a t  20 degrees north parallel, -4.6 m 
at 35 degrees south parallel, and as much a s  27.2 m at the South Pole. If a 
spheroid based on a s e r i e s  expansion of spherical harmonics with the same  
oblateness coefficients as in the gravity equation were  used instead, a s  provided 
by Krause's  theory, these deviations could be reduced to 2 .4  m y  4 . 9  m y  4.0 m ,  
and 10. 8 m y  respectively. This surface formula would be more consistent with 
the gravity formulation. 

50 




Nortb Pole 

South Pole 


FIGURE 10. HEIGHT O F  "BEST" GEOID (MODEL 5 )  
OVER TRIAXIAL ELLIPSOID O F  FLATTENING 

1/298.184, ALONG PRIME MERIDIAN 
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FIGURE 11. DEVIATION O F  GRAVITIES O F  MODELS 1, 2, 3 AND 4 

FROM GRAVITY O F  "BEST" GEOID (MODEL 5) , 


ALONG PRIME MERIDIAN 
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3. The currently used NASA Standard Oblateness coefficients Jz, J3, 
.J4resul t  in gravity values, which differ f rom the gravity based on recent  
satellite measurements by as much a s  35 mgal at the North Pole, -15.7 mgal 
at the equator, and 30 mgal at the South Pole (along the Meridian) . Replacing 
the three J-coefficients by their updated values does not lead to significant 
improvements. 

4. Conversely, updating the oblateness coefficients J2, J3, J4in the 
NASA Standard geometry model (and using the se r i e s  expansion, as noted 
above) could lead to significant improvements in height deviations (Fig. 6 ) ,  
amounting to about 100 percent a t  the North Pole, 50 percent at the South Pole, 
and 30-50 percent at most  of the intermediate latitudes. 

5. For  cer ta in  applications ( e .  g. , guidance of shor t  duration first 
s tage boos te rs ) ,  use of geographical and gravitational models based only on 
Jzmay be permissible. Because of the shape of the Jz-harmonic (F ig .  2 ) ,  it 
is advisable to use the ellipsoid (flattening 1/298.254), not the spheroid, as 
geometrical  reference. Its height deviations from the "bestt1geoid (c i rcu lar  
equator) a r e  less  than 10 m in the belt between 65 degrees north and 65 degrees 
south latitudes. The gravity of this simple model differs by maximally 30 mgal, 
at the South Pole ( -18.5 ingal a t  equator, 16.8 mgal a t  90 degrees north) from 
the sophisticated gravity model. The deviation is zero at about 24 degrees 
north and 30 degrees south parallels intersecting the P r ime .  

6. The latest  available satellite measurements result in a flbestl 'geoid 
which is pronouncedly "pear" shaped, with the north polar radius being 37.8 m 
longer than the south polar radius vector. The equator is slightly elliptic, with 
a difference of 69.0 m between the semi-major and semi-minor axes .  The 
major axis of the equator ellipse is rotated West against the P r i m e  Meridian. 
The rotation angle (longitude) is currently thought to be -1 8 degrees k 3  degrees .  
A s  shown by Krause,  the "best" geoid can be described by a se r i e s  expansion 
of spherical harmonics of the same  degree as in the geopotential, the (amplitude) 
coefficients of which a r e  directly related to the satellite-obtained oblateness 
coefficients. 
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7. A s  an approximation to the ItbestTtgeoid, an  exact ellipsoid can be 
defined, as is customary in geodesy. The ellipsoid is a triaxial ellipsoid with 
the s a m e  equator ellipse as the geoid. The largest deviations of this body from 
the geoid a r e  18.87 m at the poles. In a band bounded by the parallels 63  degrees  
north and 70 degrees south, the height differences amount to less than 10 m .  
If f o r  the geopotential of the triaxial ellipsoid only even J's are used, the gravity 
deviates f rom the geopotential of the geoid generally by less than 7 mgal and 
between 70 degrees north and 70 degrees south by less  than 5 mgal. 

George C. Marshall  Space Flight Center I 

National Aeronautics and Space Adniinis tration 
Marshall  Space Flight Center, Alabama 35812, January 3 ,  1969 

933-50-07-01 
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APPENDIX A 

Computation of Legendre Polynomials 

The Legendre spherical  functions P (x) are polynomials of the typen 

P (x)  = 
1 - 3 5. . . (2n-3) (2n-1) [. n - n(n-1) 

X 
n-2 

n n! 2( 2n-1) 

+ n(  n-1) (n-2) (n-3) 
2 . 4( 2n-1) (.2n-3) x

n-4 - . . .] 
n = 0, 1 , 2 , .  . . 

They are solutions of the differential equation 

For  the present analyses, the Legendre functions were computed from 
the recurrence relation 

( n +  l ) Pn+1
(x) - ( 2 n +  1 ) x Pn (x )  + n Pn-1 ( x )  = 0 , 

where 

x = sin@ 

and start ing with 

Po( s in@)  = i 

P,(s in@) = sin@ . 
The most  extensive tabulation of P (cos$)  , for  n = O (  1)80 and n 

@ = 0" ( 1" ) 180", has been published in Reference 19. Since 

cos@ = sin(90" + @ )  , 

the spherical functions can a l so  be taken from this reference.  

55 




-0 

APPENDIX B 

Al ternate Expression for t h e  Gravity Acceleration 

Krause, in References 2 and 3 ,  gives a form of the gravity, 

00 

- P ( s i n + )  + 3 ~ ~ , 2 c o s ~ + c o s 2 ( ~ ­- = c,, - ( n +  I ) Cn n  h,' Y 

ge n=1 ( 59) 

obtained from equation (26) by several  transformations [ 21. The coefficients 
C are related to the oblateness coefficients J and can be determined from n n 
them by relations similar to the equations (16) through (22) for the coefficients 
A

n' involving some of the latter. 

2 ,  1 
X 1 + 2 ( 1  - Ao) - - W  

150 3 e  + - (3J2 + Ge)' 

1- -Bz( 1852 + w"e - 3B2)]5 

c, = 0 

2 1 4-	 ?A2 - 2 ,  - - (3J2+w"  ) ' +  -B2(1852+; - 3 ~ 2 ) ]  

9 e 63 e 21 e 

2 S 
C4 = X [J4 - 5 A 4  + -4 

(352 + + -B2( 1852 + w" e - 3B2)]175 175 

F o r  the "best" geoid (Model 5a) with Kozai's set of J up to JI4, the 
C-coefficients become n 
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Co = 1.001760646 

c, = 0 

Cz = - 0 .1172324264~lo-' 

C3 = - 0.1272995717 


C4 = + 0.2636592115 


C5 = - 0.1401281566 


c6 = + 0.4619357542 


C7 = - 0.2500551096 


c8 = - 0.2102749240 


C, = - 0.4245829102 


Clo = - 0.4424481398 


Cli = + 0.2520357773 


Ci2 = - 0.3025300610 


Ci3 = - 0.9786358495 


Ci4 = + 0.1553740187 


x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

With these coefficients, equation (59) then becomes6, using 
= 978.0320,ge 

g = 979753. 968 + 3439. 7 i2P2(s in@) + 4. 980P3(s in@) 

- 12. 893P4(s in@) + 0 .  822P5(s in@) - 3. 163P6(sin@) 

+ 1.956P7(s in@) + I .  85iP8(s in@) + 0.415P9(s in@) 

+ 0.476PI0(s in@) - 2. 958Pli( s in@) + 3. 846P,,( s in@) 

+ I .  340Pi3(s in@) - 2. 279PI4(s in@)  

+ 15. 873cos2@cos 2 ( h  + 18") (mgal)  . ( 60) 

6. Some of the amplitudes (coefficients) of the gravity equation in Reference 3 

have been found to be slightly incorrect.  The values are corrected here .  
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With the Legendre polynomials obtained as shown in Appendix A, the 
gravity can be computed for the "bestff geoid from equation (60) as an 
alternative to the gravity equation ( 2 6 ) .  
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